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ON A DYNAMIC CONTACT PROBLEK FOR A SINGLE ELECTRODE* 

T.V. RYZHKOVA 

The dynamic problem of surface-wave excitation by the main element of 
electrode transducers, a single electrode simulated by a strip stamp 
lying freely on the surface of a piezoelectric half-space, is considered. 
The vertical component of the displacement and the electrical potential 
is given in the contact region , while the surface outside this region has 
no electrical and mechanical loads. The boundary value problem of 
electroelasticity mentioned reduces to investigating a system of in- 
homogeneous Fredholm type integral equations of the first kind in the 
unknown normal stress and charge distribution density functions. 

The regularization method for the system of integral equations obtained is based on 
constructing the factorization of the kernel matrix-function and enables the system of integral 
equations of the first kind to be reduced to a system of integral equations of the second kind 
with a completely continuous operator for which separation into finite-dimensional and small 
terms is effective. Solutions are obtained for this system, that describe the behaviour of 
the contact stresses and the charge distribution density on the electrode, as well as the 
displacement and potential wave fields on the free piezoelectric surface, with the assignment 
of the electrical and mechanical perturbations taken into account. The absolute values of 
the deviation of the excited wave phase velocity from the Rayleigh wave velocity are computed 
at given points on the ST-cut surface of a piezoelectric quartz crystal. 

Approaches developed earlier for constructing approximate solutions of the problems of 
the excitation and interaction of surface waves with metallic electrodes are based, as a rule, 
on the assumption of the weightlessness of the electrodes without taking account of the 
influence of the mechanical perturbations and the nature of the contact with the medium /l-3/. 
At high frequencies as well as during examination of resonators these factors are of no little 
importance. 

1. We introduce an 0x,x,+ coordinate system and we assume that the crystal occupies the 
domain Q G 0;~~ is the wave propagation direction and the electrode dimensions along the x2 
axis are infinite. 
l Prikl.Matem.Mekhan.51,3,525-528,1987 
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excited by an electrode [al,%] (81 is the origin and a,the termination of 
simply supported on the surface of a piezoelectric field when electrical 
are applied are described by a combined system of dynamic equations of 
equations in the quasistatic approximation /3/ with mixed boundary 
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The steady-state harmonic oscillation mode is considered, namely, 

Ci = ui (11. ~3) eio*, Y = $(Q, ZQ)@~, En = En (q, sa) Pt 

Dm = Dm(w 4 e 
iot 

, Fl = fl(4 e id, ~~ = f,p: 

Here lJi are displacement vector components, '4 is the electric potential, En, D, are 
the piezoelectric electric field and induction vector components, D# is the normal component 
of the electric induction vector of a vacuum, o is the frequency of electrode vibration, Ci,klr 
enlkl, %, are the elastic, piezoelectric, and permittivity vectors fl(tl), fz are given amplitude 
values of the normal components of the displacement and the electric potential that has a 
constant value on the electrode surface. Without loss of generality, we set f1 (x1)= k ex~(Wd. 
For an electrode with a flat underside q= 0. 

Solving the dynamic contact problem (1.1) and (1.2) , we find the displacement and 
potential wave fields on the free surface and we also study the behaviour of the contact 
stresses and the charge distribution density on the electrode. To do this we reduce the 
mixed problem (1.1) and (1.2) to a system of integral equations by first solving the auxiliary 
problem obtained from the mixed problem by assuming that the contact stress and the charge 
density on the electrode are known. The boundary conditions of the auxiliary problem are 
formulated as follows 

(1.3) 

In conformity with the physical principle of ultimate absorption /4/, the problem (1.1) 
and (1.2) posed above is reduced by the method of the Fourier integral transform using the 
solutions of the auxiliary problem (1.1) and (1.3), to a system of integral equations of the 
form 

The elements of the matrix-function of the kernel Kij(u) are awkward in fonn*,(*Ryzhkova 
T.V., Cm the vibration of an elastic half-plane and the phase velocities of surface acoustic 
waves. Dep. in VINITI June 15, 1984, No.3985-84, Rostov, 1984.) and their properties are 
investigated numerically using a computer. 

Let us note the fundamental properties of the elements of Q(U). 
lo. On the real axis the functions Kij(u) have four points &Ak(k= 1,2), -%>A,, and two 

poles f5. 
2O. The functions Kij(U) are complex in the domain Aejdl~I<& on the rest of the axis 

the Kii(u) are real, and KU(u) (i#j) have pure imaginary values. The equality AU(~) = -&I (u) 
holds, the Kii(u) are even in u, and the Ail(u) (ii!) are odd. 

3'. As IuI-oo the elements of the matrix function K(u) have the following form apart 
from the factor (I-i- O(I ~1~')): 

Kll z A 1 u I-l, K,, z B I u I-l, K,, z iCu_‘, A > B, B > 1 C I (4.5) 

In the representation (1.4) the contour r agrees with the real axis, deviating from it 
only by bypassing the positive singularities from above and the negative ones from below. 
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The slits drawn from the branch points to infinity and separating the single-valued branches 
of h-i1 (Ui lie in the first and third quadrants /5/. 

The theorems of the uniqueness and single-valued solvability of systems of integral 
equations similar to (1.4) are proved in /5/. 

2. The theory for the solution of systems of integral equations given on segments by 
factorization of the matrix-functions of the kernel is outlined in /5/. 

In the notation used in /5/, we obtain approximate formulas for the unknown vector- 
functions q (51). vf b-11 == is: (I,)~ 0,: (2.1)) CT: (~1) are the amplitude val.ues of the displacements along 
the z, axis, and rp; (21) are the amplitude values of the potential) 
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Here CB (cfi= --bk) are zeros of the determinant K(u) lying above the contour in the complex 
plane; factorization is performed with respect to the contour I? ij*(j= Z,...,n,) are para- 
meters of the approximation of the matrix-function K(u)by a polynomial matrix, and Res (N,, bk) 
is the residue of the matrix-function N+(u)at the point bk. 

The amplitude functions of the contact stresses and charge distribution at the electrode 
edges have the following singularities 

q (51) = I‘ (.r, - a,++, '1 - /Xl J- 0 q (.r,) = r (a? -- .,)-"a-*, x,-a2 -0 7 (2.2) 

(A, B, C are constants characterizing the asymptotic behaviour of the elements K:,(u) of (1.5)). 

3. Numerical realization of the dynamic contact problem under considerationwasperformed 
using a computer. Results showed that the electrode dimensions and the nature of the applied 
load effect the amplitude'characteristics of the contact stresses and the charge distribution 
denisty substantially. It is established that the oscillating nature of the contact stresses 
and the charge distribution density increase with electrode Length; the amplitude charge 
distribution functions take the highest value on electrodes of small size. On superimposing 
both kinds of electrical and mechanical loads the mechanical load exerts a governing influence 
on the ampl-tude dependences on the contact stresses and the electsical load exertsasimilar 
influence on the charge distribution characteristics. 

The figure shows graphs of the real part of the amplitude charge distribution function 
Re 9% (.Q for different electrode dimensions , obtained when electrical and mechanical loads 
are applied. The x1 coordinate is expressed in wavelengths I=2nv&, where v, = 3158 m/s is 
the velocity of the Rayleigh length for the ST-cut of a quartz piezoelectric crystal, and 
o= 10s 82. Curve 1 is obtained for the case when the normal displacement component is given 
in the contact domain (k= &q= %f2= 01, curves 2 and 3 fox an electrode of width h correspond 
to the cases when only the potential (f,= 0, fr= i) is given on the surface of an electrode of 
width h and 0.5 1 

The amplitude dependences of the contact stresses and the charge distribution density 
are obtained in dimensionless form. Consequently, to write the solution in dimensional 
variables it is sufficient to multiply them by the corresponding normalizing factors by means 
of the formulas 

d, = 10" N/d, 
d, = 10X1 V/m, 
h=t m 
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The expressions for the given amplitude functions of the displacement and the potential 
have the form f,* (z,) = f1 (X,&I fn* = f&h. 

4. On the basis of the solutions obtained that describe the displacement and potential 
wave fields in the domain behind the electrode, we present a 
of the deviation of the excited wave phase velocity from the 
given point of the piezocrystal surface. 

The wave process in the domain 
by the wave packet 

n 

method of computing the values 
Rayleigh wave velocity at any 

behind the electrode is described 

e (q) = 2 A, (4 exp (~q~l) 
j=l 

which can be approximated by the wave 

The wave number corresponding to the Rayleigh wave is known. 
We denote it by x(x = 5). then x.q = px,+ kn. At infinity, at far zone 
points, the phase velocity of the excited wave agrees with the 
Rayleigh wave velocity, and therefore, the value of the argument of 
the function exp (ix& should be selected from the condition m= k. 

Let Au be the absolute value of the deviation of the excited 
wave phase velocity u1 from the Rayleigh wave velocity Q: Au= ip(v,- 

The table shows values of Av at given points of the surface for the case of electrical 
(fl = 0, f2 = 1) and mechanical (fl= l,fz= 0) perturbations as well as for the superposition of 
both kinds of loads (k= 1,f2= 1) for electrodes with flat undersides (q=O) of width 1.5 h. 
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